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‘Nash Solution by Extremum Seeking Control Approach!

Yaodong Pan?

Abstract

In this paper, we propose an algorithm to solve the
Nash equilibrium solution for an n-person noncooper-
ative dynamic game by the extremum seeking control
approach with sliding mode. For each player, a switch-
ing function is defined as the difference between the
player’s cost function and a reference signal. The ex-
tremum seeking controller for each player is designed so
that the system converges to a sliding boundary layer
defined in the vicinity of a sliding mode correspond-
ing to the switching function and inside the boundary
layer, the cost function tracks the reference signal and

converges to the Nash equilibrium solution.

Keyword: Noncooperative Game, Nash Equilibrium

" Solution, Extremum Seeking, Sliding Model

1 Introduction

For an n-person noncooperative dynamic game, each
player defines a cost function and adjusts some of the
control parameters to minimize his own cost function
[1}[2] to find & Nash equilibrium solution. When the
cost function as a measurable variable or a combina-
tion of some measurable variables can not be exactly
formulated, i.e. when the form of the cost function is
not given mathematically although it is measurable, ex-
tremum seeking control with sliding mode can be used
to solve for the Nash solution.

Extremum seeking control approaches have been pro-
posed to find a setpoint and/or track a varying set-
point so that a cost function (which may be unknown)
of the system reaches the extremum(3][4][5]{6]. The
extremum seeking controllers with sliding mode have
been proposed[7][8][9][10], and can be explained by the
configuration in Figure 1. The switching function s(t)
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is defined as
s(t) = y(t) — 9(2)

where g(t) is a reference signal. The setpoint for the
minimum (or maximum) can be reached no matter how
the plant changes. With this control method, the slid-
ing mode s(t) = 0 happens, the system oscillates in
the vicinity of the sliding mode s(t) = 0, i.e. oscillates
inside a sliding boundary layer |s(t)] < €, and a mini-
mum or maximum point can be reached in the sliding
mode, as shown in Figure 1. Designing an extremum

u=a(x, B)J——»| %=f(x,u) Hy = h(’i"‘{"

. -Bs<¢e| g &
&= B, s2¢

Figure 1: Extremum Seeking Control Using Sliding Mode
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seeking controller for each player ensures that the dy-
namic game system converges to the Nash equilibrium

point.

The arrangement of the paper is as follows. Section 2
describes the problem formulation; Section 3 proposes '
the extremum seeking algorithm using sliding mode to
calculate the Nash equilibrium solution; and Section 4
gives simulation results.

»
£

2 Problem Formulation

w '

~-Consider an n-person-noncooperative dynamic game

described by a nonlinear system
420 = £@),u©, 00, um@) O
with cost function for -th player
() = K@), GeN) @,
where N is the index set of player (‘iéffi;led as -
N ={1,2,---,n},

z(t) € R™, ui(t) € R (i € N), and Ji(t) € R (i € N)
are the state variable, the i-th player’s control input,
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and the i-th player’s cost function, respectively. The
functions, f(x(t), u1(t), ua(t), - -,u,(t)) and Ji(z) (i €
N) are assumed to be smooth.

Assumption 1 There exist smooth control laws
ui(t) = au(z(t),6:), (i€ N) ®3)

Jor all players to stabilize the above nonlinear system
(1), where 8; € ©; (i € N) is a control parameter.

With the control input (3), the closed-loop system of
the nonlinear system (1) is determined by

Z2(0) = £(2(0), e (x(0),62), 0a(a(®),B2), -+ an((8), )

Assumption 2 There erist a smooth function z,:
R — R such that

f(z(t), e1(z(t), 1), a2(2(t),6), - - -, an(x(t), 0,)) = 0
$

T= ze(al,om te 19n)

ie., every n-tuple of the control parameters 6, €
B; i € N ) determines a unique equilibrium point
ze(61,62,- -+ ,6y).

Assumption 3 The static performance map at the
equilibrium point z.(01,0,,---,0,) from a n-tuple of
0; €©; (i € N) to J;(t) represented by

‘]le = J(ze(01’029” * )on))
= J(01192"")0ﬂ), ,(iGN)

is smooth and has a unique Nash equilibrium solution
J.(of’o':’" e+, 0p)

)

v
.7:(0;,95,“-,0;,“',9;) < M
Ve, € 9,-,(ieN)

at point (87, 63, ---, 6%) such thatJ.(@ " e,)

Assumption 4 The partial derivative of the static
performance map J¢ (i € N) satisfies

ew"

i e J°|@|30 5 Th Viki GeN)
aq A
'y The control objectlve is to solve the Nash equilibrium
solution J* (63, -,07) by adjusting the parameters

8; by each player (z € N) separately.

3 Extremum Seeking with Sliding Mode

To design an extremum seeking controller with sliding
mode for the i-th player (i € N), a switching function
is defined as

si(t) = Ji(t) — 9i(2) (CY)
where the reference signal g;(t) € R is determined by
9(t) = Bi(t), (5)

where the time-varying parameter g;(t) will be given
later. Then a sliding boundary layer based on the above
switch function is defined as :

ls:i(t)| < & ©)

where ¢; > 0 is a small positive constant.

Let the variable structure control law be

vi(t) = —kisgn(si(t)) (™
and the parameter 8; satisfy

é,' (t) = Y{ (t)

where k; is a small enough positive constant.

Assumption 5 The dynamic system given in (1) is
much faster than the one of the parameter 8; ’s adjusting
process, i.e.

I—fv(t)l >> I 6yl
Therefore in the design of the e:l:tremum secking con-

troller, the cost function J;(t) can be replaced by the
static performance map

Ji = Ji(61,602,---,0,).
Assumption 5 is reasonable once k; is small enough.

Assumption 8 The setpoint (0, 63, ---, 6},) corre-
sponding to the Nash equilibrium solution is in the
vicinity of the initial n-tuple of 6;(0) (i € N). Thus
the partial derivative of the cost function J;(t) on 6; is
bounded by a positive constant v, i.e.,

i
|EJ1'(01»02’"'aai,“'!oft)lS’Yi (8)

Based on the above assumptions, the derivative of the
switching function s;(t) is given by

Zag Ji(61,82, -+, 60)05(8) — i (2)

J=1

"Wt(ola 02’ “T n)kngn(si(t)) ""ﬂi(t)

d
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where W (6,62, ---,80,) is determined by
u’i(91502, e )o‘n) =

N8
Ji(oly 02: tee ,on)
Z&@
i=1

Ksgn(s;(8)
Fisgn(si(9)

According to Assumptions 4 and 6 and if the positive
constant k; (¢ € N) is bounded by some constant, it
can be shown that W;(6,,0,,---,60,) is bounded. To
simplify the notations, it is assumed to be bounded by
7% (i € N), ie.

lm(oboﬂy"'von)l <% (iEN)
Define a Lypunov function as
1 .
vi(t) = 5530 ©)
Then

ZUO) = 0550 |
= —W;(61,02,--,0,)ki|s:(t)| — s:(t)Bi(t)

According to sliding mode control theory, to ensure the
convergence to the sliding mode s;(¢t) = 0 or the slid-
ing boundary layer [s;(t)] < €;, the above derivative
must be negative. Therefore the time-varying parame-
ter B;(t) outside the sliding boundary layer (6) is chosen
as

A —_ _ﬁi) b t —€i
Bit) = { £y ;8 ; e“ (10)

where ,B,- and f; are positive constants satisfying
B > vikito:
Bi > vikito:

o; is a positive constant. Thus the following holds.
d
%0 < —als@), @) >« (11)

which means that the system will enter the sliding
boundary layer |s;(t)| < ¢ in a finite time and stay

there - _{h d
Inside the shding boundary layer |s;(t)] < €;, the time-
varying parameter G;(t) is chosen as

= —B, —€ <s5i(l) <€
Aule) = { 2€:6(t — to), E 8.‘(5 (=)€i< ) a2

where §; is a positive constant satisfying
Bi > viki + o4, .
&(t — tp) is the impulse function defined as
A | oo, t=1p

S =to) = {0, t#to
t+

‘o(t—to)dt = 1

to

to is the time instant when s;(t)|¢=¢, = €i-

With the parameter f;(t) designed above, inside the
sliding boundary |s;(t)] < € except for one of the
boundaries, s;(t) = €;, the reference signal gi(t) keeps
decreasing with .

Git) = —PBi.

At the same time, the cost function J;(t) may increase
or decrease but the absolute value of the change rate
of Ji(t) is less than the one of g;(t) as

i) = [Wi(61,62,--,0n)lk:
< ki < i —oi < Bi = |g:(2)]
Therefore s;(t) = Ji(t) — g:(t) will increase, i.e., the
system will move toward the sliding boundary s; ) =e
and reach the boundary at some time instant to. Then
with the adjusting rule g;(t) = —2¢;0(t—to), the system
will move to the another boundary s;(t) = —¢; as

si(te) = Ji(to) — gi(to) =&

si(tg) Li(tg) - e (t3)

(%

(Ji(to) - g.'(to)) — 2¢; A 6(t - to)dt

0

= —e"

After then, the system will move from the boundary
si(t) = —¢; to another one s;(t) = €;, again while the
reference signal g;(t) keeps decreasing. In this way, the
system will vibrate inside the sliding boun: e

It is assumed that the system reaches the boundary
s;(t) = € at time instants ¢ = to,%1,12,--- 88 shown
in Figure 2. If the sliding boundary layer is chosen to

! T T T T Y T T
: : : : ;

Figure 2: Extremum Seeking Control with Sliding Mode

be narrow enough, then it is reasonable to assume that
every period [ti, ti+1) ( = 0,1,2,---) is very short so
that the function W;(6;(t), 82(t), - - - , 0x(t)), denoted as

ai,j = Wi(al (t), 02(t)1 AR 6ﬂ(t))|t€[tj;tj+1)’ (J =0, 1, 21 *




is a constant in each period and satisfies

leijl <%. (5=0,1,2,--.)

Now let’s show that the cost function J; (t) will decrease
while the system vibrates inside the sliding boundary
layer.

At the time instant ¢,
8i(to) = Ji(to) — gi(to) = ¢;.
Then at the time instant ¢,
K(tg) = Jito)

%(t3) 9i(to) + 2¢;,
8i (tb'-) = —€.

Let o1 denote the time instant when 8i(t)|e=ty; = 0
(to<to1 <ty). Fortf <t< to1, the followings hold.
s(t) = Ji(t)-gl(t) <0,
Jit) = —ayokisgn(s;(t)) = a; ok;,
) = -B:i<0
which yield

Ji(t) = Ji(to) + as oki(t — to)
%®) = gi(to) + 2 — Gi(t — to).

According to
8i(to1) = Ji(to1) — gi(to1) = 0

the time instant ¢9; can be found as
€

tor =t +
Bi + o ok;

and J;(t) and 9i(t) at t = to; are given by

Tte)) = Ji(t) + Si%.0ks
i(tor) (to) Bi + a; ok;
gilto) = gilto) + 26 — —P
i + o ok;

For toy < t < tg, the followings hold.
si(t) = Ji(t) - g(t) >0,

Jo = —a; ok;,
at) = -Bi<o

which yield

Ji®) = Ji(tor) — oy okt — to1)
() = g(tor) - Gi(t - t01') .

According to
si(t1) = Ji(t1) — gi(t1) = &

the time instant £; can be found as
€
t =to + =———
i — o 0k;
and Ji(t) and g;(t) at ¢t = ¢, are determined by

2

2

a; ok}
Ji(t = Ji(tg) — 2¢;——22t
(t1) (to) e’ﬂ?—a’,{ok?

2 12
ai,oki

= .
B? _ai,oki

i.e., the cost function J;(t) and the reference signal g(t)
decrease in the period [to,21) as

gi(t)) = gi(to) — 2¢;

k2
Ji(tl) - J,-(to) = 26— <0

gi(t1) — gi(te) = —2¢=—2ult _

In a similar way, it can be shown that before the Nash
equilibrium solution is reached, the followings hold.

Ji(te) > Ji(t1) > Ji(t2) > ---=0
gi(te) > gi(t1) > gi(tg) >---=0
When the Nash Solution is reached at a time instant

tm, i.e. when o; ; =0 (5 =m,m+1,m+2,...), Ji(t)
and g;(t) will keep to be a constant.

Theorem 1 Consider the dynamic noncooperative
game described by the state equation in (1) with the
control input in (3), the sliding mode controller with
extremum seeking control approach for the i-th player
(i € N) designed as

s(t) = Ji(t) - w(t)

0,' = = v,-(t)
v(t) = —kisgn(s;)

_ﬂ:i, 3;(t) < —€ .
G:(8) = =B, =& <alt)<e
g‘(t) N 26,'6(t - to), Sg(t) = €&

Bi, si(t) > &

ensures that the cost functions Ji(t) i € N )
are minimized to get the Nash equilibrium solution
J*(61,63,---,6;).

Remark 1 The variable structure control rule Jor the
i-th player (i € N) may be replaced by

vi(t) = —kisgn(sin(wisi(t)7/2/e)), (e N ) (13)

where w; > 1 is a positive number, then the ampli-
tude of the vibration on the cost function J;(t) becomes
smaller for larger w; , which still results in a stable
extremum seeking control. :



Remark 2 To implement the proposed algorithm for
the sampled-data system and also to simplify the con-
troller, the reference signal gi(t) (i € N) can be modi-
fied as

wy={ o MBS wen) a9

where f; satisfies
LB:T: = 2
T; is the sampling interval and l; is a positive constant

which indicates the number of the sampling intervals
when ¢;(t)=B; (i € N).

4 Examples

Consider a two-person noncooperative dynamic game
described by a second-order linear system with un-
known parameters.

. -1 0.2
() = [ 0.3 -1 ] 2(?)
+ 0.5(u1(t) — 2 — 0.1u2(t))2 + 1.0
0.7(uz(t) — 1 — 0.2u4(¢))2 + 05 |~
The cost functions for two players are respectively de-
fined as
Ji(t) = z(t)
B(t) = z()
The control input is chosen to be the control parameter,
ie. :
ui(t) =6;(t), (i=1,2)
Then it is clear that the Nash equilibrium point is given
by
07 = 1.4286
63 = 21429,

The proposed extremum seeking control algorithm is
implemented for the above system with sampling in-
terval as T' = 0.01 second and other parameters as

B; = 0005 B;i=50 =2

& = 005 k=001 (:=12)
The simulation results are given in Figure 3, which
shows that the system enters the sliding boundary layer

in a finite time and then oscillates inside the layer while
the cost function keeps decreasing with oscillation until

the Nash equilibrium point is reached. The amplitude

of the vibration can be reduced by choosing a smaller
boundary layer e. Figure 4 are simulation results with

=001, Bi=1(G=12)

Using the control laws givén in Remark 1, as shown
in Figure 5, results in higher control accuracy with a
larger constants w; (i = 1,2). '

5 Conclusion

The extremum seeking control approach with sliding
mode proposed in [7][8][9][10] was implemented in an
n-person noncooperative dynamic game to calculate
the Nash equilibrium solution. With the designed con-
troller for each player in the game, the system enters
a sliding boundary layer and stays there while the cost
function decreases with oscillating behavior, until the
Nash equilibrium solution is reached. The simulation
result show the effectiveness.
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Figure 3: Nash Solution by Extremum Seeking Control(e; = e5 = 0.05)
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